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Bayes and Equivariant Estimators of the Variance of a Finite Population

By

S. Zacks and H. Solomon

0. Introduction.

Let XyyeesrX be the values of a variable x that measures a

N
characteristic in a finite population of N elements. Let

=] L

N N
2N 2
(0-1) R A AT
B L=

i=1
be the population mean and variance of the measurements. In the present
paper the problem of estimating U% on the basis of a sample Xl”"’xn’

2 <n <N, from the population is studied. The commonly used estimator

is th te vardense © wol U Uprdm it o T -L9x istn
is the sample variance G = = .z 37X )% ere X =+ )X is the
i=1 i=1
: . k2 . . A N, 2
sample mean. It is well known that o, is an unbiased estimator of T,

under simple random sampling.

In the present study the "unbiased" estimator gi is replaced by
Gi = % _)I_:ljl (xi-)'('n)g, which is called the "classical” estimator. The two
estimat;;s are nearly equivalent if the sample size is not trivially small.
The "classical" estimator does not utilize any prior information on 62 that
may be often available. There are many examples of repetitive sampling
surveys, in agricultural or industrial areas, in which good information is
available on the distribution of the seasonal or yearly yield (production)
of a certain commodity. Samples may be taken during the season to observe
the distribution of related characteristics that may improve the forecasting
of a population value. Estimates of the variance in the population could be

adjusted adaptively in order to imporve the prediction (confidence) intervals

7“8 12 1o

for population parameters.
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In this paper we show how such prior information on the mean and
variance of the population can be utilized to adjust the "classical"
estimator. Specifically, by utilizing the special structure of the sample
survey theoretical model and of the likelihood function we derive the
general form of Bayes and Bayes Equivariant estimators. It is shown

that for any prior distribution, H, of independent identically distri-

buted variables XyseeesXyp having a prior mean Ho and prior variance
og, the Bayes estimator of 02 fox squared-error loss is (approximately)
2 na2 o =
(0-2) ‘C\T = - + - E = E 2
B N 0-n (l N)[UO £ N (Xn-llo) ] .

Estimator (0.2) does not depend on the sampling procedure. This Bayes
estimator is a weighted average of the "classical" estimator, 3&, based on
the observed sample and the Bayes estimator of the "within" variance in the

unobserved portion of the population and the estimator of the variance

e

between the means of the observed and unobserved portions of the population.

The estimator (0.2) could well be found very meaningful and good also in a non-

Bayesian sense by considering p, and cg as proper estimates (or quesses) of |

the mean and variance of the unobserved part of the population.

o)
. 3 = . 3
Equivariant estimators of the variance o, are considered with respect

N
9.(.N)

to the group ‘ﬂ of real affine transformations on the parameter space

of (xl,...,xN). It is shown that every equivariant estimator of o2 can be
" :

N
AN

expressed in the general form nnw(gn), vhere W(Eq) is a proper function

of the maximal invariant statistic, which is the vector of standardized

sample values. Bayes equivariant estimators are studied, with respect to

(/\ 2 2 Ah

A 2 2
i i (6F v\ - J_ & "rwSL
the quadratic loss function L(an(gn),n) = Cnv(gn) UN) M In contrast

N




to the case of determining Bayes estimators, the form of the Bayes equivariant
estimator depends strongly on the particular prior distribution specified

for xl, ’Xye For exa_mple, it is shown that

A2 A2 3 3 _ a2 n 1
(0.3) 5 = ‘In(l - N)(l "853 %an3 * O(N) ’
is the Bayes equivariant estimator for prior normal i.i.d. variables,
regardless of their prior mean and variance. The above formula {0.3)
is relatively simple. It depends only on 'éri and does not depend on
u - This is not always the case, as shown by Zacks [16] in the case of

exponentially distributed i.i.d. variates.

In Section 1 we introduce the sample survey model and discuss sample

statistics and likelihood functions. The Bayesian approach extending the
§ample survey model is discussed in Section 2. Sections 3 and 4 define and
analyze equivariant estimators, Bayesian concepts and loss functions.
Bayesian measures of relative efficiency are introduced in Section 5.

We provide a numerical example in which fifty populations of size N = 100

\
were simulated from an exponential distribution. From each such popula-

tion a sample of size n = 10 was drawn and the estimators ?ri and 3’123

were computed. It is interesting to observe the extent to vwhich the
Bayes estimator '&i is more effective than the classical estimator '&2

in small samples. Estimate of their Bayes relative efficiency is provided

in that example. General efficiency analysis is provided for prior normal : J

distributions. It is shown that the classical estimator is considerably a5

less efficient than the Bayes estimator. Some sensitivity analysis is

performed to study the effects of erroneous prior parameters on the SN

B

relative efficiency. BISTRIBYVON/AVAILABRITY COOES
ist.  AVAIL. end/“or SPECIAL
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There are only a few published papers on the Bayesian estimation of the
variance of a finite population. Liu [9] considered unbiased estimators
of U§ under various possible sampling designs. Since the sampling
variance of these estimators depends on the population values X)seeesXyy
tiu considered the Bayes risk of these estimators. He derived a lower
bound to the Bayes risk function and thus showed the optimality of the
Horwitz-Thom;mon type estimator, under certain conditions. We remark
that Liu's study is not really a Bayesian study, since proper Bayes
estimators are independent of the sampling design and are generally
not unbiased. Royall [10], [11] and Royall and Cumberland [12] studied
the problem of developing confidence intervals of the population

variance by regression estimates. We cannot compare their results

with ours since the problems are different and so are the approaches.

2. Foundations.

Consider a finite population of size N whose units have values
(real finite) XyseeesXpye According to the modern theory of sampling
surveys (see Godambe [5,6,7], Basu [2] and others) the population vector

EN = (xl,...,xN) is considered a parametric point in a parameter space
()

» Wwhich belongs to the Euclidean N-space. In the present paper a

sample, s, of size n, 1< n<N, designates a subvector of Xy

consisting of n components s =< xi seeesX, >, vhere
1

i
n

13 € (1,2,...,N} for all j = 1,...,N. A sampling procedure is a plan
according to which the components of Xy are chosen. In a non-Bayesian

theory of sampling surveys one has to introduce probability functions




P(g) on the sample space, _ﬁ,, of all possible samples, in order to
discuss random samples. In a Bayesian theory the parametric vector
on is considered a random vector having a prior joint distribution
H(?EN) on Q'(N) . According to this approach, the population vector,
Xy is a realization of a sample from a "superpopulation"”, generated
(like in a Monte Carlo procedure) according to H(&). According to
this approach, given any sample s =< xil,...,xin>, the joint prior
distribution of s can be derived from H(’.SN) and the posterior joint
distribution of E;I-n‘: < X5 v ¢ s> and is independent of the sampling
probability function P(s), which is immaterial for a Bayesian analysis
(see Solomon and Zacks (1970)). For this reason we will assume in what
follows, without loss of generality, that the sample consists of the
subvector x = (xl,...,xn) and ;‘c‘;\i_n = (xn+l,...,xN). If  Xp5eee5%y
are assumed tp be priorly independent and identically distributed then
any sample s can be considered a simple random sample from H, as
in the classical model of inference.

The estimation problem is that of estimating a specified parametric
function 6(;5&) of the population vector ( e.g. the population mean,
variance, etec.).

3. Estimators of the Population Variance.

3.1 General Structure.

(o3

let x = (xl,...,xn) be an observed sample. Designate by ;C-n, .

~n

the sample mean and the sample variance, respectively; wvhere

n
b3 x; and 3’2=
=1

= N

"LMS

- 1 = \2
*n = n n (xi'xn) i




-—3F
If Xyon and Tlai-n designate the mean and variance of the N-n units

not in the sample then the population variance is

G.1) P) =28+ a-BHE_+Ra-BHE )P.

Formula (3.1) can be verified since total variance may be written as

the average of the conditional variances plus the variance of the condi-

tional expectations.

Estimators of the population variance are sample statistics with-range

in (0,o). The most common estimators in use are the sample variance

A2 D : . A2 n a2 |
g, or the "unbiased estimator o, ==oa. Formula (3.1)

shows. that, regardless of the sampling procedure, a proper estimator of

& (xn) can be obtained by substituting estimators of = and %' in
~] s N-n ﬁ\l—n
(3.1). The "unbiased" estimator 'Eri can be obtained from (3.1) by

: =K — 2 _.n _DNentl a2 =
substituting Nen = *n and TN_’n - T Op * As will be shown

in Section 4, Bayes estimators of ¢ (;EN) can be obtained

by substituting corresponding Bayes estimators for 'r§ " and :?I;"n
in (3.1).

3.2 Equivariant Estimators.

Following Fraser [4] we willdenote by [@,B], with -«» <O <
and B £ 0, a real affine transformation, i.e. [C,B]x = Q4Bx. Let }
denote the group of all such transformations. We define [a’ﬁ]l‘-N:(yl’""yN)’
where y, = [9,B]x,, i=1,...,N. Every element of H transforns ¢ into g(N)
in a 1l:1 fashion. Let E be the group of transformations on the parameter
space of 02(:5.'“) induced by the elements of #. That is, if




[@,Blxy, = Yy then o (ZN) S 8% (ﬁ) where B° is the element ofﬂ corres-
ponding to [Q,B] of G. An estimator o (§n) is called equivariant

with respect to G if, for every [0,B] ¢ §

5.2) Plloplx) = 8%%¢) ,  x, e @),

The sample variance 3121 is equivariant with respect to ﬂv. The

statistic
N e T
~n 5 2 A ‘Zn
n “n

is maximal invariant with respect to # Thus, every equivariant estimator

of 0'2(35“) can be expressed in the form
(.3) - 68 (x) = 8viw)

where W(Bn) is a proper positive function of the maximal invariant
statistic En . For further reading on invariance structures for
sampling from finite populations see Chaudhuri [3]. ¥

4. Bayes and Bayes Equivariant Estimators.

k.1 Bayes Estimators.

Let H(&) be a prior distribution in a specified family H. Let
2 .
L(¢ ,02) denote a loss function associated with estimating 0'2(x.N) by
2 z 2
(s (.’541)‘ An estimator G-H(g_tn) is Bayes with respect to H(&) and

L(8°,06°) 1if it minimizes the prior risk function

(.1) RO?H) = -L<N> LG5 (5,),0° () () -




The following is a general result for the squared-error loss

function:

If xl,...,xN are i.i.d. random variables having any prior

distribution H(x) with a finite prior variance, crg, then the

Bayes estimator of & (;SN) is

(4.2) =2 a-Dd 2 ),

vhere Ui = ug(l - i‘—') and Wy is the prior expectation.

The proof of (4.2) proceeds as follows. The Bayes estimator of

0-2(351\1) , given X0 for the squared-error loss function is the posterior

expectation of (3.1). Furthermore, since the components of Xy are

priorly independent

2 2 N-n-1 2
("”03) EH(TN-nI’f-n] = EH{TN-n} = o

N-n O °?

for any prior distribution H, having variance crg. Moreover,

2 0'2
(4.4) Byl (50 lx)) = i)+ -

Substituting these expressions in (3.1) one obtains (4.2). In

many situations it is not unreasonasble to assume that XyseeesXy are

priorly i.i.d. Hence, formula (4.2) is a very general formula, since

it does not depend on the form of H(x), but only on the prior mean

and variance. These values may be known from previous experience.




4.2 Bayes Equivariant Estimators.

Consider the structure of Bayes equivariant estimators, ‘We have

X,
*
en ™ -;2-,/\—1]x 2
s “N-n
n n

* * & ~ _a e
where xN i (xn+l""’x'N) and EN-n is maximal invariant-with respect to

#a Let N and w?\l-n be the mean and the variance of Eo;-n' One can

-express the population variance <imthese terms in the form
e 2 _ A2 n n,, 2 .n 2

(l.].. 5) o (ﬁ) = O-n[N + (l = N) (WN-n + N VN_n)] .

Thus, comparing (3.3) and (4.5), the y-function of an equivariant

estimator should be chosen to estimate the function

(4.6) i 10 ) =B+ @-D6h e ) ]
y -n’ N -n N-n © N "Nen’ ° t

Let L(¥,D) be a loss function for the estimation of D(w I?I n) by ?

v(u ). . L{y,D) is invariant with respect t
u ). v, P o H¥. Let G(Bm’oEN-n) be

& prior distribution induced by H(J‘SN). The prior risk associated with

¥ and G is

; ®.7) R(¥,G) = jL(\Jr(Bn),D(w;_n,vi_n))dG(gn,},l,;;_n) .

: a2 - :
An estimator crn‘JrG(gn) is called Bayes equivariant if Vo minimizes (k.7).
Notice that the criterion of minimizing (4.7) is the same as minimizing
> A 2 A 2 2 L
the Bayes risk for the quadratic loss L(G,O’N) = (G-UN) /&n’ where
A2
=o v ).

T




In many applications it would be reasonable to assume that the family 'ﬂ-

of prior distributions is a family with location and scale parameters. In

other words, assume that all the prior distributions of “H- are of the form

. e Eaty N *Ho
H(—=—=, = seees /) »
0 0

vhere -oo < Ho <o and 0 < % < w. In this case the Bayes equivariant

estimator depends only on the general form of H(xl,... ,x.N). Indeed, the
r . * . S . .
distribution G(gn,gN_n) is the same for all y, and o, of distributions

in :ﬂ'

Equivariant estimators in the strict sense were defined as those of

the form 'c\ri\lr(gn). The Bayes estimator GQB (4.2) is thus not strictly

equivariant. However, if XN is transformed to [a,B];sN the prior

parameters (u,»0,) should be transformed to (%81 (ky50,) = (cx+6uo,]€|cro)
Let 32(% = )(x ) denote the Bayes estimator '}ri with the prior parameters
2

Ho and o respectively. Then o-( )(x ) is generalized equivariant in

OJ
the sense that

A2 2A2
(h-S) U[a,ﬁl (Llo’co)([a’S]J'sn) = B U(“O’o_o)(}in) J

for all 0 <O < o 0 <P <w; and all X Furthermore, the Bayes

, 2
estimator ’4\1( )(x ) is also Bayes in the class of all generalized

equivariant estlma.t.ors with respect to the quadratic loss 6 “On )2/3 .

10




4.3 Examples of Bayces hquivariant Istimalors.

4.%5.1 Normal Priors.

Suppose that xl,..,,xN are priorly independent and identically
distributed (i.i.d.) normal variables with prior mean Ko and prior
. 2 > .
variance o.. “}/- consists of all such distributions with - < o < e

0
2 —
and 0 < 0; <. Under this model the sample statistics X and Gi

are independent of T; , @and ;i? . The Bayes equivariant estimation is
= -n
A2 221 Nyeor. 2 n 2
=0 Uz - =)[Elv + = 3
€l Opr (%) = OplF + Q- PEGY )+ § By plu )]

We now show that w and V. are independent of LN Indeed, by

N-n N-n

* o - A 2
the Bayes model X, and XNon ore independent. Hence (xn,c >4 i 1§

n°~n

independent of zg_n. Furthermore, (ih,gn) is a complete sufficient

statistic for the subfamily of prior distributions of X Hence, from

Basu's theorem (Basu, [1]) u ~is independent of (gﬁ_n,x ,Gn). Finally,

n

5 e s * S ; >
since Bﬁ-n is a function of (EN-n’Xn’Un)’ u and 5§—n are inde-

pendent. Hence,

2 o n N-n-1 n N‘n-l
’_ = = — off —-]]l=- - =
(4.10) E[wN_nluNn] Blvwg ) = 5= « == E{E[N-n-1,n-1]] - e ek

Similarly,

N |




(+.11) E(vC [y i N

N-n'~n N-n

(N-n)(n-5) °

Substituting these results in (4.9) we obtain as the Bayes equivariant

estimator

(t.12) 8 ) =820 -+

=

which, in large populations is close to Vf‘ (x -x) /(n-))

It is well known (see Zacks [17; pp. )h6]) that the minimum mean-

2
0]

e
x?zl (x;-x)7/(n+1). On the other hand, if the loss function is the

squared-error equivariant estimator of o. in the i.i.d. case is

- ~ 2k . 5 .
quadratic loss (0-00) /Un the best equivariant estimator is

53 l(xi-zjg/(n—j). This confirms the above result.

4.3.2 Exponential Priors

Suprose that Xqseee Xy are priorly i.i.d., with a common exponen-
3 : 2 2
tial distribution, with mean (the prior variance is Oy = po). 1

is shown in [16] that the Bayes equivariant estimator is

(4.13) Opp = Un =3 (1"— THﬁ;jTHf;y O(%) P

where f(gn) = -min(ul,...,un). Thus, in contrast to the normal case,

in the exponential priors model the Bayes equivariant estimator depends

on u, too.

12




S,

S Bayes Risk Efficiency.

In the present section we introduce an index of Bayesian efficiency

of estimators of oi. Given a prior distribution, H(§N), we denote by

R(Gg,H) the prior risk function of an estimator 42 under H. In the

present section we consider squared-error loss, 32—03)2, only.

Generalization to quadratic loss functions can be readily attained.

Since the minimal prior risk is attained by the Bayes estimator 3;,

with proper prior parameters Ho? cﬁ, ve define the prior

’ RS P A
relative efficiency of an estimator ¢ as

2
R(AS,H)

! (5.1) RE(5Z,H) - ’j’ :
R(“,H)

For any estimator, O < RE(c”,H) < 1.

5.1 Exponential Priors-Example.

We provide now a numerical example of estimating the variance of
a small population, N = 100, when the population variates are priorly
i.i.d. exponential random variables with expectation By = 10. The sample

size is n = 10. In Table 1 we present the values of the classical and

the Bayes estimators determined by 50 independent simulation runs. In

each case we give also the value of Ui. We see that generally the

Bayes estimator is closer to the population variance. The prior relative

62 . h? e . ? t (A ﬁg)
efficiency of O against oy 1is estimated to be RE = .122. Note R(un

and %(33) are the sample estimates of the prior mean-squared-errors




[(32-02)2} and E [(32—02)2} respectively. We see in this example
EH n N Byt \gpty/ 2o

that the classical sample variance is very inefficient compared to the
Bayes estimator. In the following example we show some analytical

comparisons for the normal case.

5.2 Normal Priors.

The prior relative efficiency index {5.1) can be expressed also

in the form

R AL \E
‘EH{(O -(TB) il

e
(5.2) R M) = 1+ )
vhere PVR is the posterior variance of the Bayes estimator 3123 In

IS

: 2 < ;
the case of prior i.i.d. normal (uo, oo) variables, one obtains
L
2
AL

g,
(5.3) B(PVR(LX,)) = 5 (-0)@-Fa-1)

(D)
where f = n/N. Consider the sample variance 3; Due to the prior
i - 2
independence of xn and '(‘rn we obtain

-

V&

bed
(5.1) 18 - 28 - 0-Dieda -9+ 2 G ug) )

) (9]
- (1-f)20'(§ E[[%‘; Xi[n-].]-(l -1\1—1) -%— X;B[J.He] b

2 2
where Xl[n-ll and XP['” designate independent chi-sguared r.v.'s.

From (5.5) and (5.4), the prior relative elTiciency of oi, relative

14




]
Table 1. 50 Independent Simulation Runs of Exponential Populations
of Size N = 100. Variance Estimates are Based on Samplc
| of Size n = 10.
A A2
3 6% (i) 52@1) ot (i)
| i 11.0279 91.3822 59.3401
| 2 25.90k47 95.5583 99.7959
| 3 163.197h 108. 4712 117.90%5
L 114.8876 102.4455 112.7694
5 48,5473 96.1006 140. 4537
6 24,1673 92,6005 95.3784 e
v 233.9413 115.0590 110.2580 R(c) = 3887.67
8 24,2149 92.809%6 75.1228 ¥
] 9 36.0928 9% . 789k 88.0842
‘ 10 58.1589 95.87643 92,6123 i
g 11 82.4155 98.25h1 100. 83501 i :
12 110.1057 101.415% 82.7590 R(oy) = 47k.90 i
15 30.7288 94.2891 82.7665 ;
14 92.7353 99.359%2 66.7146 |
i 15 14.1656 92. 9971 100.5613 !
' 16 30.6368 93,152k 87.0248 5 i
17 75.4294 97.7225 T4.1037 RE(crn,H) = .12215 |
18 123.1242 102. 9664 104, 8201 k,
19 3k4.97%0 95.1125 86.4942 i
20 226.5559 116.6118 118.14538 i
21 16.9147 92.2562 15k4.9088 '
22 98.5459 100.9711 T2.2479
% 48.8585 ol Ol72 154.9985 &7 |
oL 54.3939 95.4909 114.8043 4;
25 52.1598 95.2457 158.8236 &
26 55.5302 95.6501 79.0303 5’” §
27 171.1030 107.1958 87.079% e
28 105.0818 100.6807 128.0554 &
29 17.5409 92. 9367 95.6511 $
30 23.1610 9.2519 gk, 2ko7 g
31 116.63h1 101.8029 118.2L461 Qﬁ
32 27.0976 9. 14356 74,1948 & f
33 69.4181 98.1458 101.3439 Q"
e 20.7525 90217 98.1385 4"
L 191.2959 112.5688 121.3687
36 199. 93551 110.6755 105.35757
37 83.3185 98.55Th 67.8614
38 17.2250 95.0543 T77.5798
39 218.7134 112.1959 108. 5281
40 30,0034 95.1121 85.3298 :
41 34.1185 95, 4967 80,7266 3
Lo 32.7168 95.6U2% 106.1845
L3 50. 9459 95.325h 77.0860
LY 41.4210 9k . 8008 6Lh. 2112
b5 36.6681 o4, 1586 75.0202 |
L6 22.9325 95,6654 88,6956
b7 -~ h1.hs25 9h. 1452 6k, 5216
48 149.5766 106.0161 99.71°1
49 19.2172 101. 9416 79. 8605 15
50 6L, 9060 96.6517 60.5816

e R

T o




to the prior normal distributions is:
-~ . 7)
N(O-T)[=5 1+ (L-F) - (1
o N N
(5.5) RE (6, ,H) = |1 .
o 1
1 21 - =(1-f))

N

The relative efficiency function is independent of the prior

parameters, since % is a scale parameter of the distribution. We

therefore provide in the following table some relative efficiency values

as functions of the sample fraction f and the population size, N.

Table 2. The Prior Relative Efficiency of 3;.

n\f|; 0.10 0.25  0.50

e
.
—

U

100. | 0.11% 0.310 0.665
200. | 0.112 0.309 0.666
300. | 0.111 0.308 0.666
Lo, | 0L 0508 10,666
500. { 0.111 0,308 0.666
6005 | 030,508 0.666
700. | 0.111 0.308 0.667
800. | 0.110 0.308 0.667
900. | 0.110 0.308 0.667
1000. | 0.110 0.308 0.667

N

Q
f f 9]
WWWWLW\WIPDMNDD

L]
\C
N

0000000000
BRBENIBEEERS

)

.

.

. ‘ T AcTne !
From Table 2 the prior relative efficiency of o, 1is almost independent of

the population size N and is somewhat greater than the sample fraction,

f. These numerical results show the extent of possible improvement in

estimation if good information is available on the prior distribution.

16




In order to analyze the extent of errors in the prior assumpbions coacerning

the values of p, and o, we derive, on the basis of (5.2), the prior

relative efficiencies of 32 (x_), under (u,,0.). It is a straight-
pl,cl ~n 070
forward matter to show that the prior relative efficiency of Gﬁ % (xn)
. l) l -~
is
o 2
2 N(1-£)[ (D-l+f€)2) G f—l-—] <X

(5.6) RE(Uh.,H) =41 + ]

2(1-§ (1-£))

where p = ci/cg and & = (ul-po)/co.

In Table 3 we present the prior relative efficiency of the Bayes estimator
Ei,(gn) as a function of f, & and A=p-l, where H' is the N(ul,ci) distribution.
We see that the magnitude of ® is not so important, but deviations from %
larger in magnitude than 10 percent reduce the prior relative efficiency
below that of Gi. In Table 4 we provide these prior relative efficiency
values for values of A between -7.5% to 7.5% . We see that in this

range the Bayes estimator is considerably more efficient than the classical

sample variance.




Table 3. ‘The Prior Relative Efficiency of & (¢ ), N=1,000

Sample Fraction = .10

Y -.30 =20 =00 008 ' GA0 0200 0,50
-.50 0.028 0.067 0.279 0.75: 0,12k 0.0k2 0.021
-.40 0.027 0.061 0.258 0.87% 0.141 0.045 0.022
=30  0.026 0,057 0,211 0.950 < 0.157 0,048 0.023
-20 ' Q.025 0.055 O.dlgh 0.986 0,170 ©0.051 0.025
=10 0.02Fk ©.655 0.185 0,998 0.179 0.052 0,024

00 ©.02k ©0.055 0.182 1,000 0,182 0.055 ©O.02h
0.30 0.02% 0.0585  0.155 0,998 ©.179 0.052 0.02%

0.20 0.025 0.055 0.19% 0.98 0.170 0.051 0,02%
0.30 0.026 0.057 0.211 0.950 ©0.157 0.048 0.023
0.40 0.027 ©.061 0.258 0.87k 0.1%1 0.045 0.022
0.50 ©.028 0.6067  0.279 0.75k 0.12k 0,042 0.021

Sample Fraction = .25 ‘

g\ -.30 =20 s BB G060 0:30 | 0,20 . 0.50
«50 0.088 ©.122 0.617 0.391 0.091. 0,057 0.020
-0 0,038 0.09% 0.415 0.602 0.119 0.0tk 0.023
=30 0.035 ©.078 .50l 0.617  0.150 0.05L 0.025
~20 0,061 0069 0.24F 0.950 0.180 0.05T7 0.027
-.10 0.029 0.064% 0,219 0.99% 0.202 0,061 0.028

J00 0.029 0.062 2100  1.000 0.210 0.062 0.029

i

il
0:10 0.029 ©.0648 0.219  0.99% 0.202 0.061 0.028 }i
0.20 0.031 0.069 0.247 0.950 0.180 0.057 0,027 ‘P
0.3  0.053 0,078 0.30b 0.817 0.150 0.051 0.025 |
o.ll0  0.088 0.09% @ O 415  0.602 0.119 0.0k 0.023 |
0.50 0.045 0.122 0.617 0.391 0,091 0.05T 0.020 i

Sample Fraction = .50

A\ -.30 -.20 -.10 0.00 0.10 0.20 0.30 v
«5 0.1k 0,395 0780 0.199 0073 0,056 0.022 |
=00 0,076 2L Oe8HT .57  0.109  0.0L8 - 0.027 '
“a50 00585  OuIhE @555 « GJEL5 | 0159 0.082  0.032
-.20 0.048 0.110 0.382 0.8 0.216 0.076 0.038
=10 0.04k  0.095 0.307 0.989 0.266 0.087 0.041

200 00435 0.091 0:286 1000 0.286 0.000 0.043
0.10 0.0k 0.095 0.307 0.989 0,266 0.087 0.041

.20 0.08 0.110 0.382 0.8% 0.216 0,076 0.038
0.30 0.058 0.1k2 0.555 0.645 0.159 0.062 0.052
0,0 0,076 0,21 0,887 0,37 0.109 0,048 0.027
0.50 0,114 0.395 0.780 0.199 0,075 0.056 0,022




-
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Table 4. Prior Relative Efficiency of Oppr (}sn) » N=1,000.

Sample Fraction = .10
8\ =075 <-.050 =-.025 0.000 0,025 0.050 0,075
~50 a6l 0 Ss B0 95 oL sl @ ik6Tls 0,279 0,180
~.40 0.385 0.645 0.939 0.87k 0.560 0.334 0.210
~30 0.336 0.564 0.884 0.950 0.651 0.387 0.238
-.200 0.305 0.5100 0,829 0.986 0.722  0.431 0.262
=10 ©0.288 0480 0.7 0,998 0.766 0.L60 0,278
=00 0,285 @ 0.470  0.780 @ 1.000 0.780 0470 0,283
0.10 0.288 0.480 0.795 0.998 0.766 0.460 0.278
0.20 0.305 0.510 0,829 0.986 0.722 0431 0,262
0.50 0,336 0.564 0.884 ©0.950 0.651 0.387 0,238
0.kl0 0.385 0.6k5 0,939 0.87% 0.560 0.354F 0.210
0.50 ©6.461 0.75F 0.957 0.754% @ O.k6L 0.279 0.180

Sample Fraction - .25
B\A  -.075 =.050 =.025 0.000 0.025 0.050 0.075
=50 0,868 0.868 0.6IF 0.398 0.252 0471 0.122
-H0 0,658 0.911 0.9k 0.602 0.378 0.2l 0,166
-30 048k 0.759 0.965 0.817 0.5%2 0.333 0,217
=20 @.385 0.619 0.910 0,950 0:678 0.423 0.268
=30 ©0.356  0.540 0,858 06.99% O.7TT Okl 0.307
=00 0,321 0.516 0810 1.000  0.810 0.516 0,321
.10 0,556 ©0.540 G.888 0.99% 0.777 0.491 0.307
0.20 0.385 0.619 0.9100 0.950 0.678 0.423 0,268
001 0 UBlE N0 STS O ONOS SN EL T 0525 00355 0217
0.b0 0.658 0.911 0.87F 0.602 0.378 0.24% 0.166
0.50° 0.868 0.868 0,617 0.391 0.252 0,171 0.122

Sample Fraction = .50
a\ A =075 =.050 0.025 0.000 0.025 0.050 0.075
=50 0,571 0.395 0.276 0,199 ©0.148 0,114 0.09
=40 0.921 0.766 0.54% 0.375 0.261 0.188 0.1
=30 O8] 0.950 0.873 0.645 0450 0.3035 0,215
%20 .50  0.805 @ 0.97F  0.895 @ 0655 0.ul5 0.505
-.10 0.k48 0.662 0.905 0.989 0.815 0.568 0.38k
-s00 0.415 0.615 0.865 1.000 0.865 0.615 0.k15
0.10 0.448 0.662 0.905 0.989 0.85 0.568 0.384
0,20 0.565 0,803 0.9 0.89 0.655 O.b4485 0,305
0,30 0,787 0.951 0,875 0.645 0440 0,303 0.21%
O.40 0.921 0.766 0,584 0.575 0.261 0,188 0.1
0,50 0,571 0.595 0.276 0.199 0.148 0,114 0,09
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